Sistema multi estrusore MKR6 – Multi Extruder system MKR6

0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5 (0 votes, average: 0.00 out of 5)
You need to be a registered member to rate this post.
Loading...

Questo articolo spiega come si può far funzionare fino a 6 estrusori con una normalissima scheda che ha due driver per estrusori.

Un ringraziamento speciale a angelos del forum reprap Italia.

Prima cosa bisogna acquistare una scheda arduino da 8 relè. Verificare che sia optoisolata e funzionate a 5v.

Esempio:

SainSmart-8-Channel-DC-5V-Relay-01[1]

Una volta fatto questo abilitiamo nel firmware MK4duo la funzione MKR6, per prima cosa diciamo al FW che abbiamo 6 estrusori:

/***********************************************************************
************************** Extruders number ***************************
***********************************************************************/
// This defines the number of extruder real or virtual
#define EXTRUDERS 6

Poi definiamo che abbiamo 2 driver per gli estrusori:

// This defines the number of Driver extruder you have and use
#define DRIVER_EXTRUDERS 2

A questo punto andiamo in Configuration_Feature.h e abilitiamo MKR4:

/***********************************************************************
************************* Multiextruder MKR6 **************************
***********************************************************************
* *
* Setting for more extruder width relay system *
* This is new system for 6 extruder width 2 driver and 6 relay. *
* See Configuration_pins.h for pin command relay *
* *
* Uncomment MKR6 to enable this feature *
* *
* Uncomment INVERTED_RELE_PINS if your relay switches with GND *
***********************************************************************/
#define MKR6
//#define INVERTED_RELE_PINS
/***********************************************************************/

C’è anche la possibilità di invertire il segnale per far scattare i relè se per caso si attivano con livello basso…

Dobbiamo anche dire al Firmware che pur avendo 6 estrusori però abbiamo un solo Hotend, quindi sempre in Configuration_Feature.h abilitiamo Singlenozzle:

/***********************************************************************
**************************** Single nozzle ****************************
***********************************************************************
* *
* This is used for single nozzle and multiple extrusion configuration *
* *
* Uncomment SINGLENOZZLE to enable this feature *
* *
***********************************************************************/
#define SINGLENOZZLE
/***********************************************************************/

Tutto questo lo possiamo fare in maniera semplice e rapida con il configuratore on line che trovate qui sul blog.

Ora per concludere la parte Firmware andiamo in Configuration_Pins.h e diciamo al Firmware quali sono i pin che servono per far scattare i relè. I pin da settare sono EX1_CHOICE_PIN e EX2_CHOICE_PIN:

#define EX1_CHOICE_PIN 5
#define EX2_CHOICE_PIN 6

Questi 2 pin sono un esempio, ma cambiano da scheda in scheda. Per la Ramps 1.4 si possono usare i pin per i servo lasciando il pin 11 per un eventuale servo bed level.

Ora passiamo al cablaggio, prendiamo i 4 fili che escono dal driver E0 e quelli di E1 e li colleghiamo in questa maniera:

Come vedete è abbastanza semplice. Il nero che esce dal driver lo colleghiamo in parallelo su tutti i cavi neri dei vostri 4 motori, stessa cosa facciamo per il rosso. Il nero e il rosso sono l’uscita A1 e B1 del driver, quindi 1 di una coppia e l’altro dell’altra coppia.

Mentre A2 il verde e B2 il blu li andiamo a mettere sul centrale dei due primi relè. I Normalmente Chiusi dei due primi relè li andiamo a collegare al verde e blu del primo motore che sarebbe E0, in questo modo quando i relè sono nella situazione tutti non eccitati il motore che andremo a controllare sarà appunto E0.

I Normalmente Aperti dei due primi relè andranno sui centrali della prossima coppia di relè, mi raccomando non invertite le coppie, mantenete la connessione a due a due…

I Normalmente Chiusi della seconda coppia andranno al verde e blu del secondo motore E1.

I Normalmente Aperti della seconda coppia andranno al verde e blu del terzo motore E2.

La prima coppia serve per commutare tra E0 e seconda coppia.

La seconda coppia serve per commutare tra E1 e E2.

Ripetiamo lo stesso identico concetto sugli altri 4 relè collegati però con il driver E1 per cosi collegare i motori di E3, E4 e E5.

I relè vanno alimentati con una 5v fissa, poi hanno degli ingressi per farli commutare, in questo caso visto che dovranno commutare a coppie dovremmo collegarli tra loro l’in 1 e 2 con in 5 e 6, l’in 3 e 4 con in 7 e 8. Poi dobbiamo portare i 2 pin scelti per farli scattare EX1_CHOICE_PIN e EX2_CHOICE_PIN.

Fatto tutto ciò possiamo alimentare la nostra scheda e dopo aver compilato e scaricato il fw passiamo alla fase di test.

Se abbiamo fatto tutto come si deve dovremmo avere questo risultato: Se ci colleghiamo con Host i relè dovrebbero rimanere tutti nello stato di quiete, ma se passiamo da E0 a E1 dovremmo sentire commutare la prima coppia di relè e anche la terza coppia, ce ne possiamo accorgere dai led che di solito sono montati sulla schedina relè.

Se passiamo da E1 a E2 vedremo scattare anche la seconda coppia di relè insieme alla quarta.

Se passiamo da E2 a E3 vedremo di nuovo tutti i relè tornare nella posizione di quiete, ma verrà usato il driver E1.

Se passiamo da E3 a E4 vedremo scattare di nuovo la prima e la terza coppia, ma usando il driver E1 si muoverà solo il motore di E4.

Se passiamo da E4 a E5 vedremo scattare di nuovo tutti i relé, ma visto che stiamo usando sempre il driver E1 si muoverà solo il motore E5.

A questo punto possiamo provare il tutto. disabilitiamo il controllo di temperatura con il comando M302 P1, questo fa in modo che possiamo estrudere anche se la temperatura dell’hotend non è al di sopra del minimo…

Proviamo a estrudere con ogni singolo estrusore, sentirete i relè commutare ogni qualvolta cambiate estrusore.

MagoKimbra.

Come regolare i valori step/mm nel firmware

0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5 (0 votes, average: 0.00 out of 5)
You need to be a registered member to rate this post.
Loading...

Una delle operazioni fondamentali da eseguire sulla propria stampante 3D, è la regolazione del valore firmware DEFAULT_AXIS_STEPS_PER_UNIT #define DEFAULT_AXIS_STEPS_PER_UNIT   {80, 80, 3200, 625, …

Source: Come regolare i valori step/mm nel firmware

3D-izionario – il mondo è pieno di cose che ancora non esistono …

0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5 (0 votes, average: 0.00 out of 5)
You need to be a registered member to rate this post.
Loading...

piccolo dizionario della terminologia usata per descrivere le varie parti di una stampante 3d

Source: 3D-izionario – il mondo è pieno di cose che ancora non esistono …

Differenza tra velocità di stampa e velocità d’estrusione.

3 votes, average: 4.67 out of 53 votes, average: 4.67 out of 53 votes, average: 4.67 out of 53 votes, average: 4.67 out of 53 votes, average: 4.67 out of 5 (3 votes, average: 4.67 out of 5)
You need to be a registered member to rate this post.
Loading...

Spero di farvi cosa gradita, facendo questa piccola guida sulla differenza delle due velocità:

  1. Quella di stampa
  2. Quella di estrusione

Chiedo scusa se i calcoli li facilito per essere più comprensivo, normale che andrebbero fatti più seriamente, ma quello che conta è il risultato finale che più o meno è quello giusto.

Ho notato che anche dai più esperti c’è un po di confusione su queste due velocità, quindi vediamo di capirci…

Immaginiamo di stampare con un nozzle da 0,4 mm di diametro e di stampare esattamente a 100 mm/s un layer da 0,4 mm (faccio cosi per semplificare poi capirete del perché).

Ora se noi dobbiamo fare una linea di 100 mm alta quindi 0,4 mm impiegheremo 1 s alla velocità di stampa. Ma questo non vuol dire che stiamo estrudendo a 100 mm/s, perché no?? E ora ve lo spiego.

Se utilizziamo un filamento di 1,75 mm di diametro e ipotizziamo di estrudere a 100 mm/s in 1 s abbiamo estruso appunto 100 mm di filo, quindi un cilindro alto 100 mm e largo 1,75, ora sappiamo che il volume di questo cilindro si calcola con la formula:

V = (π • r • r) • h

Quindi nel nostro caso è 0,875 * 0,875 * 3,14 * 100 = 240,40 mm3

Ora calcoliamo invece il volume del nostro filo depositato sul piatto lungo 100 mm e alto 0,4 (ripeto per facilitare i calcoli mi baso su un cilindro depositato, anche se non è esattamente cosi)

0,2 * 0,2 * 3,14 * 100 = 12,56 mm3

Molto molto di meno di quello che l’estrusore ha estruso… Quindi??? Semplice l’estrusore non va a 100 mm/s. E a quanto va se deve estrudere solo 12,56 mm3 di materiale??

Sapendo il diametro del filo che è appunto 1,75 e di conseguenza il raggio che è di 0,875 sappiamo che il volume che deve estrudere quello che ci serve sapere quanto altro deve essere il cilindro, quindi la lunghezza di filo che deve spingere nell’hotend.

La formula è quindi H = 12,56 / (0,875 * 0,875 * 3,14) = 5, 2244 circa. Questo è la lunghezza di filo da 1,75 mm di diametro che l’estrusore deve spingere nel nozzle per fare uscire un cilindro di 0,4 di diametro per 100 mm di lunghezza. E in quanto tempo lo deve spingere? Semplicemente nello stesso tempo che lo deposita quindi 1s, di conseguenza la velocità dell’estrusore è “udite udite”:

5,22 mm/s

E si è proprio cosi 5 mm/s…

E se facessimo un layer da 0,2 mm sempre lungo 100 mm, più o meno la metà quindi si muoverà a 2,5 mm/s……

RIPETO sono calcoli grezzi non sono esattamente cosi, perché vanno tenute in considerazioni altre variabili oltre al fatto che reputo il filo depositato cilindrico, ma che non è esattamente cosi. Ma i valori sono approssimativamente molto vicini…

Quindi non impazzite a chiedere all’estrusore velocità oltre i 50 mm/s perché non avrebbe alcun senso, per estrudere a quella velocità dovreste stampare a velocità più alte di 10 volte i 100 mm/s cioè 1000 mm/s…

Cercate invece di inserire valori esatti per le velocità d’estrusione nel fw e non pensate di avere estrusori da F1 che non serve a nulla…

Questi calcoli vengono fatti appositamente dallo slicer che sapendo il filamento che avete calcola il volume da estrudere e in base a questo di quanto effettivamente deve muoversi l’estrusore.

Un altro sistema è quello di usare il volumetrico, quindi lo slicer non calcola più quanto deve estrudere il vostro estrusore in base al filo inserito, ma comanda la stampante con un numero che è il volume da estrudere, sarà poi il fw a calcolarne l’effettivo movimento in base al filo inserito nell’estrusore. Qual’è il vantaggio di questo sistema è quello di avere un gcode creato dallo slicer universale sia che usiate filo da 1,75 sia che usiate quello da 3. Ancora meglio se usate il sensore di grandezza del filamento in questo modo il fw si adatta in maniera dinamica a secondo del diametro rilevato dal sensore stesso…

Un saluto da vostro MagoKimbra.

Cosa sono i PID e l’autotune

2 votes, average: 5.00 out of 52 votes, average: 5.00 out of 52 votes, average: 5.00 out of 52 votes, average: 5.00 out of 52 votes, average: 5.00 out of 5 (2 votes, average: 5.00 out of 5)
You need to be a registered member to rate this post.
Loading...

PID sta per Proporzionale – Integrale – Derivata. Cerchiamo di capire cosa sono questi paroloni e cosa vogliono dire.

Se in un controllo automatizzato di temperatura usassimo un sistema semplice cioè quello di staccare il riscaldatore una volta raggiunta la temperatura voluta cosa accadrebbe?

Il riscaldatore, nel nostro caso una resistenza, conserverebbe ancora per un po della sua energia continuando a riscaldare il nozzle facendo superare la temperatura  impostata di alcuni gradi. Una volta persa la sua energia comincerebbe a raffreddarsi rifacendo scendere la temperatura del nozzle. A questo punto appena la temperatura rilevata scende al di sotto della temperatura impostata il circuito di controllo dovrà riaccendere il riscaldatore, ma quest’ultimo avrà un tempo t prima di tornare ad avere una energia tale per far risalire la temperatura del nozzle. Quindi la temperatura oscillerà di un dT rispetto alla temperatura impostata.

Oscillazione

Quindi questo metodo non è funzionale per il nostro scopo.

Si pilota, invece, la resistenza con un’onda di tipo PWM (Pulse Width Modulation) cioè un’onda quadra in cui quello che varia è il tempo in cui ha valore alto rispetto al tempo che ha un valore basso:

PWM

All’inizio quando il resistore è freddo il Duty Cycle sarà del 99%, cioè un impulso con una lunga durata alto e praticamente nulla basso.

Man mano che la temperatura si avvicina a quella impostata il Duty Cycle diminuirà, in questo modo la resistenza non avrà troppa energia per superare la soglia della temperatura impostata, ma ne avrà a sufficienza per essere ancora calda e tornare a scaldarsi per non scendere troppo al di sotto sempre della temperatura impostata.

Ma come fa il sistema a gestire questo Duty Cycle? Ecco che intervengono i valori PID di cui stiamo parlando.

Il valore Proporzionale (P) o Kp è una costante che è uguale a Conteggi/C, cioè di quanto deve variare l’uscita PWM rispetto a quanto si discosta la temperatura rilevata, sia in alto che in basso, a quella impostata. Un valore troppo basso rende la curva di salita più morbida, ma il controllo è meno reattivo a variazioni di temperatura. Mentre un valore troppo alto di Kp rende il sistema più reattivo, con una curva molto instabile rispetto al target:

PID_Kp

A questo punto si è portati a pensare che basta trovare il giusto valore di Kp, in effeti è già un parametro che fa molto per tenere la temperatura stabile, ma grazie anche agli altri due si arriverà ad avere una vera stabilità.

Il valore Integrale (I) o Ki rappresenta l’integrale dell’errore nel tempo dato dal parametro Kp. Questo parametro serve per variare il guadagno del controllo di temperatura per fare in modo che si acceleri il processo verso la temperatura impostata.

La derivata del processo di errore viene calcolata determinando la pendenza dell’errore nel tempo, questo valore viene moltiplicato per la costante Kd. La derivata predice il comportamento del sistema e migliora così tempo e stabilità del sistema stesso.

Qui di seguito vediamo una gif che spiega abbastanza bene quello che accade variando i tre parametri Kp, Ki e Kd:

PID_Compensation_Animation

Dopo questa spiegazione generale torniamo alle nostre stampanti.

Questi valori PID cambiano da Hotend a Hotend e anche da altri fattori esterni, tipo coibentazione del nozzle, areazione e anche velocità di stampa.

Per questo motivo bisogna fare il tuning di questi valori una volta pronta la stampante e ripetere questa operazione ogni tanto, per adeguarli anche all’usura stessa del nostro hotend.

Per fare questo tuning ci viene incontro un comando Gcode:

M303 H<numero hotend> S<temperatura target> C<numero di cicli> U<bolean upgrade>

Nel caso di un solo Hotend si può omettere il valore H, mentre per fare i tuning del BED nel caso volessero essere usati si mette il valore -1 come H (H-1).

La temperatura target di default è 150 e il numero di cicli di default è 5. Più cicli migliorano la stabilità, ma già 5 è un ottimo valore. Quindi il comando finale sarà:

M303 S200 C6

M303 H0 S210

M303 H1 C8

Per il Bed:

M303 H-1 S100 C5

Una cosa importantissima e fare questo controllo partendo da una temperatura ambiente del nozzle.

Alla fine il FW ci restituirà i tre valori Kp, Ki e Kd. A questo punto se abbiamo precedentemente attivato la EEPROM e usato il sotto comando U1 (upgrade istantaneo dei valori) possiamo salvare i nuovi valori subito con il comando M500 e quindi avere già il nostro hotend funzionante anche le prossime volte che accenderemo la stampante, altrimenti dobbiamo copiarci i valori e metterli nel FW ricompilare il tutto e scaricalo nella nostra scheda.

Nel file Configuration_Feature.h alla sezione PID troviamo:

// HotEnd{HE0,HE1,HE2,HE3}
#define DEFAULT_Kp {40, 40, 40, 40} // Kp for H0, H1, H2, H3
#define DEFAULT_Ki {07, 07, 07, 07} // Ki for H0, H1, H2, H3
#define DEFAULT_Kd {60, 60, 60, 60} // Kd for H0, H1, H2, H3

Qui mettiamo i tre valori per ogni hotend che abbiamo. I valori possono anche essere cambiati con il comando Gcode:

M301 H<hotend> P<Kp> I<Ki> D<Kd>

Mentre per il Bed il comando Gcode è:

M304 P<Kp> I<Ki> D<Kd>

Se usiamo il PLA e abbiamo una ventilazione molto forte, questa potrebbe influire sull’andamento della curva della temperatura se il nostro hotend non è perfettamente coibentato, per questo motivo meglio fare l’autotuning con le ventole accese, in questo modo i PID vengono calcolati tenendo conto dell’influenza dell’aria sul nozzle.

Il FET sulle schede controlla la resistenza in corrente, quindi se alimentiamo la board a 24V per esempio ai capi della resistenza ci saranno 24 V, ma possiamo limitare la corrente tramite il valore:

#define BANG_MAX 255       // limits current to nozzle while in bang-bang mode; 255=full current

255 è la massima corrente, abbassando il valore limitiamo la corrente che circolerà nella nostra resistenza, se per esempio non è idonea a lavorare a 24V.

Purtroppo il tuning dei PID non tiene conto della velocità di stampa e quindi il movimento del nozzle stesso e della velocità in cui arriva un filamento a temperatura ambiente. Quindi aumentando la velocità potremmo avere un abbassamento della temperatura e una conseguente alterazione della curva. Per aggiustare questo inconveniente ci viene incontro sempre il FW MK che ha anche il parametro Kc, un valore che varia la potenza in uscita in funzione della velocità di estrusione. Kc è in percentuale quindi 100 vuol dire il 100%, possiamo incrementarlo se abbiamo problemi di stampa a determinata velocità. Il valore può essere cambiato con il comando Gcode:

M301 H<hotend> C<Kc>.

Un altro valore è la Lag per PID tick un parametro superato il quale deve calcolare il nuovo valore di potenza in uscita. Il valore Lag si varia con il comando Gcode:

M301 H<Hotend> L<lag in PID tick>

che però non potrà mai superare LPQ_MAX_LEN, di default è impostato a 20 nel FW.

Anche questi due ultimi valori vengono memorizzati in EEPROM se attivata. Per attivare Kc dobbiamo decommentare:

#define PID_ADD_EXTRUSION_RATE

Quindi ricordatevi di fare il l’autotune dei PID e di rifarlo spesso per avere sempre delle buone stampe.

MagoKimbra…